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One-dimensional inorganic materials, such as carbon nanétubes We have used the layer-by-layer self-assembly technique to form
and semiconductor nanowirg$, have been central to recent 5-layer thick coating of the alternating poly(allylamine hydro-
advances in materials science. Unique mechanical and electronicchloride) (PAH) and sodium poly(styrenesulfonate) (PSS) layers
properties of these materials enabled a variety of applications on the surfaces of the pristine single-wall carbon nanotubes. (We

ranging from novel compositédp electronic circuit$,to sensors. have also studied coating composed of PSS and poly(diallyldim-
Often, these r_:lppllcatlo_ns require noncovalent r_nodlflcatlon of carbon ethylammonium chloride) (PDDA); see Supporting Information for
nanotubes with organic compount®NA and biomolecule$and details.) For our experiments, we grew the nanotubes across copper

polymers? We recently demonstrated a versatile and flexible Tgpm grid openings using catalytic chemical vapor depositfon.
strategy for nanotube modification using layer-by-layer self- the polymer deposition solutions contained different amounts of
assembly of polyelectrolyté8. Researchers used this technique Nac to vary the ionic strength. After polymer multilayer formation,
extenswgly for mOd'f'Cat{on (,)f flat surfacesand mlcrolzland we examined the resulting coating in high-resolution TEM.
nanopartlcleé,.? howev_er, litle is known about the mecham_s,m and Figure 1 shows representative TEM images of coated nanotubes.
the factors influencing layer-by-layer self-assembly inone- Notably, we observed no continuous coatings on carbon nanotubes

dimensional nanostructures. S . . .
The exact conformation of polyelectrolyte chains deposited on at low ionic strength (Figure 1AC). For ion concentrations of
poly y P 0.05-0.2 M, our samples contained more than 90% of bare

single-walled carbon nanotubes (SWNT) is still unknown. There . L
uncoated single-walled nanotubes. Once the ionic strength became

are two possible configurations: flexible polymers wrapping around i
P g poy bpPing cgreater than 0.2 M, the polyelectrolytes formed a coating on about

the nanotube, and stretched, rigid chains stacked parallel to th . i . - . .
nanotube axi8.Several factors, such as polymer rigidity, surface 85 /°_ of the nanotut?es, W'_th the thickness steadily '”Creas'“g with
the ion concentration (Figure 2). Researchers have previously

curvature, and strength of polymesurface interactions, can - i ) )
determine the nature of assembfy® Persistence length of the described an increase of the polyelectrolyte layer thickness with
polymer chain should be one of the critical parameters since it the ionic strength for layer-by-layer assembly on flat surf&€és;
determines the chain’s ability to wrap around the nanotube. Indeed,however, they have not reported an ionic strength threshold for
computer simulations for spherical substrates show that polymer the deposition initiation.
rigidity and substrate surface curvature can influence the deposition ~ Our results can be easily rationalized if we assume that the self-
process415 Computational models also show that the persistence assembly mechanism involves wrapping of the polymer chains
length of the polymer must fall below the threshold values around the nanotubes. At low ionic strength, the polymer chains
determined by target surface curvature in order to initiate poly- are too rigid to bend around the nanotube and the deposition cannot
electrolyte deposition proce$sAlthough these models described occur. Once the ionic strength is high enough to diminish the
the effects of salt concentration and target surface curvatdbe, persistence length below the nanotube curvature (Figure 2 inset),
they considered only nanoparticles with a radius of 5 nm and the self-assembly can proceed and the polymer layers begin to form.
larger?6.18 One-dimensional materials, such as carbon nanotubes, Additionally, as the assembly diameter grows, the curvature effects
provide an even more interesting template for studying self- diminish and self-assembly can proceed even at lower ionic
assembly mechanisms since they give us access to even smallesirengths. We have found that, as long as the first three layers were
surface curvatures down to 1 nm. deposited at high ionic strength, subsequent deposition steps could
We have examined the role of the polymer persistence length in proceed at low ionic strengths (see Supporting Information).
the layer-by-layer self-assembly process on carbon nanotubes by\ioreover, unlike the individual single-wall nanotubes, larger-
observing formation of multilayer polyelectrolyte shells around diameter single-walled nanotube bundles were usually coated by
carbon nanotubes at different ionic strength. Persistence length of,, | polymers at all ionic strengths used in our studies (images not
polyelectrolytes varies with solution ionic strengthdue to shown), further supporting our hypothesis.

screening of the electrostatic repulsion between the polymer We also note that we have previously reported polymer multilayer

backbone charge’$;23 therefore, changing ionic strength is a . o )
convenient wav to alter the configuration of the polvmer molecule formation on carbon nanotubes at ionic strength below the deposi-
y 9 poly tion threshold® However, those experiments utilized nanotube

systematically. L S
y y surface pretreatment with ionic pyrene derivatives to create surface

| Lawrence Livermore National Laboratory. charge on the nanotube, while the experiments reported here did
University of California, Los Angeles. . . -
$ University of California, Davis. not use pretreatment. In addition, in the present experiments, we
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as soon as the polymer chain can bend enough to match the
nanotube surface curvature, the assembly process starts. This critical
polymer chain curvature determines the threshold value of the ionic
strength at which layer-by-layer self-assembly can proceed. We also
argue that an alternative mechanism based on rodlike assembly is
much less likely to produce this behavior, and even if it could, the
correlation between assembly threshold and the nanotube persistence
length would have been purely fortuitous.

Our results indicate that polymer conformation, or more specif-
ically, the ability of the polymer chain to bend in order to
accommodate the support curvature, is one of the critical parameters
controlling layer-by-layer electrostatic self-assembly on one-
dimensional templates. We also found that polymer rigidity at low
ionic strength can suppress the polyelectrolyte assembly on carbon
nanotubes. Our results indicate that this process likely involves

) . . wrapping of polymer chains around nanotubes. Thus, controlling
Figure 1. TEM images of single-walled carbon nanotubes after polymer th | hai f tion i ful strat for fi
deposition for ionic strengths of (A) 0.05 M, (B) 0.1 M, (C) 0.2 M, (D) 0.4 € polymer chain coniormation Is a poweriul strategy tor fine-

M, (E) 0.65 M, and (F) 1.05 M. Scale bar corresponds to 10 nm. tuning self-assembly on one-dimensional templates.
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